In the last line of the paragraph after Equation $(1.18b)$, the last phrase should be: one ohm ⁻¹ is defined as one Siemen (S).
Four lines from the bottom, units for lambda (λ) should be S/(eqv-cm ²), not S/(eqv-cm ³).
Table 1.2 title, units for lambda (λ) should be S/(eqv-cm ²), not S/(eqv-cm ³).
Top, <u>Standard</u> molar enthalpy of reaction; $\Delta \overline{H}_r^{\circ}$ in text and in equation.
In the table at the bottom of the page, the values of log γ , γ , and Activity for Ca ²⁺ should be -0.089 , 0.814, and 8.14×10^{-5} , respectively. The corrected table appears below:
IonSize Parameter a $\log \gamma$ γ Activity
Na ⁺ 4 -0.0230 0.948 1.90×10^{-3}
CI^{-}_{2} 3 -0.0230 0.948 1.14 × 10 ⁻³
Ca ²⁺ 6 -0.089 0.814 8.14×10^{-5}
HCO ₃ 4 -0.0230 0.948 9.48×10^{-4}
Lines 4-5, "reactant molecules products," should be "product molecules reactants."
Figure 3.1 includes three curves — one for the enthalpy (<i>H</i>) of the molecules, one for the product of the system temperature and the entropy (<i>S</i>) of the molecules, and one for their Gibbs energy (<i>G</i>). In Figure 3.1, the two <i>E</i> * terms are reversed. The term on the far left should be $E^*_{A+B\rightarrow P}$ and the term on the right should be $E^*_{P\rightarrow A+E}$. The corrected figure appears below: Molecules above this energy level are activated complexes, AB^* (or, for the reverse reaction, P*) $E^*_{A+B\rightarrow P}$

Problems p.126	In Problem 12, th				-		be:
p.120		k = 10	$^{-3.2} \text{ atm}^{-1} \cdot \text{s}^{-1}$, not $k = 1$	$10^{-5.2}$ atm 1 ·	d	
p.128	The revised versi	on of Problem	19 is availabl	e on the book	's webpage at	waveland.con	1.
Chapter 4							
p.218	In the lines just b	pefore section	4.4, the value	$2 \times 1.13 \times 10^{-4}$	should be 1.3	31×10^{-4} .	
Chapter 7							
p.366	The equations at	the top of p.3	666 are incorr	ect. Replace t	hat material	with the follow	ving content:
	HAc $_{added} = A$	cetate – 1 _{eq} –	- Acetate – 1	_{in.init} = 1.1934	$4 \times 10^{-3} - 1.0$	0×10^{-4}	
		1		= 1.0934	4×10^{-3}		
	HAc add	$_{\text{led}} = [\mathbf{H}^+]_{\text{eq}} -$	$[\mathbf{H}^+]_{in,init} = 1$	$.0934 \times 10^{-3}$	-0 = 1.0934	10^{-3}	
					11		
p.367	In Figure 7.6 the numerical values		-			-	
	(a)	, in the puruge	upii oolo ii uli			a appears cere	
	(u)			No. of iterations	1		
	pH	4.000	Sum o	f cations (eq/kg)	1.0117E-04		
	Ionic strength	1.00e-04	Sum	of anions (eq/kg)	1.5041E-05		
			Char	ge difference (%)	74.114346		
			Concentration		Activity	Log	activity
	Acetate-1		1.5041E-05		1.4867E-05		4.828
	H+1		1.0117E-04		1.0000E-04		1.000
	H-Acetate (aq) OH-		8.4959E-05 1.0187E-10		8.4961E-05 1.0069E-10		4.071 9.997
	(b) Distribution of comp (Concentrat	ponents between di ions in molal)	ssolved, sorbed and	I precipitated phas	es		
	Component	Total dissolved	% dissolved	Total sorbed	% sorbed	Total precipitated	% precipitated
	Acetate-1	1.0000E-04	100.000	0	0.000	0	0.000
	H+1 Figure 7.6. Ou 4.0	1.8613E-04 tput screens for by addition of Equilibrated	100.000 or a system co f strong acid. mass distribut	ontaining 10 ⁻² (a) Overall s ion.	^{0.000} ⁴ <i>M</i> HAc whi ummary of so	ch is then adjution compo	0.000 Isted to pl sition;
		$_{\mathrm{d}} = \left[\mathbf{H}^{+}\right]_{\mathrm{eq}} - \left[$,				
	Of the 1.861×1 (i.e., H_3O^+), generative with acetate in H (4.74), the proton	erating an H ⁺ IAc molecules	activity of 10 s. As expected	^{-4.0} . The rest of the pl	of the <i>TOT</i> H H of 4.0 is lov	(8.496×10^{-5}) wer than p K_a f	<i>M</i>) is bound for HAc

Chapter 8	
p.425	In Table 8.6, row (h), the value in the ALK column should be 3.01, not 2.51.
p. 427	In Equation (8.21b), insert a coefficient "2" before α_2 .
p.432	In the equation at the bottom of the page, the signs preceding the (H ⁺) and (OH ⁻) terms are reversed. The equation should read:
	$TOTH = 2H_2CO) + (HCO_3^{-}) - (OH^{-}) + (H^{+})$
Chapter 9	
p.480	In the equation shown for part (b), the denominator $c_{L,i}$ in the first fraction should be $c_{L,i'}$ and the term in the denominator $(c_{L,i'})$ in the second fraction should be $(c_{L,i})$.
Chapter 10	
p. 542	On the first page of Table 10.3, some of the entries in the top row showing stability constants for complexes of Ag ⁺ with EDTA, CN ⁻ , and HS ⁻ are in the wrong columns. The correct entries are as follows:
	EDTA CN ⁻ HS ⁻
	AgL 8.05 AgH_1L -0.78 AgL 13.82 Auture 14.74 $A_{\rm eff}$ 20.48 $A_{\rm eff}$ 17.01
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	The same change should be made to the copy of this Table in the Appendix, p. 860. See Errata p. 5 for a corrected copy.
p. 544	On the third page of Table 10.3, in the fifth column, showing stability constants for complexes of Hg^{2+} with NH_3 , the entry labeled HgL_3 should be moved down one line and changed to HgL_4 , and its associated value should be changed from 10.04 to 19.28. The same change should be made to the copy of this Table in the Appendix, p.862. See Errata p. 6 for a corrected copy.
p.559	Table 10.5, add n_e to the equation for $\Delta \overline{G}_r = -2.303 n_e RT \Delta pe$.
Chapter 11	
p.652 Problems	In Problem 22, line 5, change $Zn(OH)_2(s)$ to $Zn(OH)_2(am)$.
Chapter 12	
p.682	In the expression for $\{Cu^+\}/\{Cu^{2+}\}$ near the bottom of the page, $10^{2.72}$ should be $10^{2.69}$, and $10^{-25.92}$ should be $10^{-25.95}$.
	Two lines lower, in the expression for $\{Co^{2+}\}/\{Co^{3+}\}$, $10^{33.1}$ should be $10^{32.4}$, and $10^{2.46}$ should be $10^{3.76}$.
p.686	The following sentence should be added to the answer to part (a) at the bottom of the page:
	The half-reaction for oxidation of NH ₃ can be obtained by adding the " K_a " reaction for NH ₄ ⁺ /NH ₃ to the half-reaction shown in Table 12.3 for the NO ₃ ⁻ /NH ₄ ⁺ couple.

Chapter 12 (continued)	
p.687	In part (ii) Cl_2/CN^- :
	In the first reaction shown, the product should be Cl^- , not $\frac{1}{2}Cl^-$
	$\frac{1}{2}Cl_2(aq) + e^- \leftrightarrow Cl^-$
	In the third reaction shown, insert a + sign between Cl^- and $\frac{1}{2} OCN^-$ on the product side
	$\frac{1}{2}Cl_2(g) + \frac{1}{2}CN^- + OH^- \leftrightarrow Cl^- + \frac{1}{2}OCN^- + \frac{1}{2}H_2O$
	In the last sentence before equation (12.22) , omit the word "log" before variable <i>K</i> . The sentence should read
	By definition, e° equals K for the oxidation reaction, so we can write:
p.698–99	In line 4 of Example 12.10, $10^{45.61}$ should be $10^{35.4}$, $10^{52.63}$ should be $10^{43.6}$, and Fe(CN) ₆ ³⁻ should be Fe(CN) ₆ ⁴⁻ . (Note that the species Fe(CN) ₆ ³⁻ on the subsequent line is correct.) Correspondingly, the log <i>K</i> values for the reactions at the top of p.699 should be 35.4 for the second reaction, -43.6 for the third reaction, and 4.83 (instead of 6.01) for the overall reaction.
	Also, in the second reaction, the reactant Fe^{3+} should be Fe^{2+} .
	And, in the final paragraph of the solution, $10^{-6.01}$ should be $10^{-4.83}$, and >6.01 should be >4.83.
p.759 Problems	In Problem 9, line 1, change $S(s)$ to SO_3^{2-} .

Table 10.3, p. 542 and Appendix A.5, p 860

Tal	ole 10.3	Stabilit the liga	Stability constants for so the ligand, H^+ , and H_2O .	nts for ind H ₂	some O.	metal-li	igand c	omplexe	ss. Valı	les corre	espond to	logβf	or forma	tion of th	ne compl	ex from t	Table 10.3 Stability constants for some metal–ligand complexes. Values correspond to log β for formation of the complex from the free metal, the ligand, H ⁺ , and H ₂ O.	etal,
	CO_{3}^{2-}	3^{2-}	SO_4^{2-}	J. a	С	CI-	H	F	N	NH_3	PO_4^{3-}	3-4	EDTA	TA	CN ⁻	2	SH	
Ag ⁺			AgL 1.30		AgL	3.31	AgL	AgL 0.40	AgL 3.31	3.31			AgL	8.05	AgH_1L	AgH_1L -0.78	AgL	13.82
			AgL ₂ 5.25	5.25			AgL_2			7.21			AgHL	14.74	AgL_2	20.48	AgL_2	17.91
			AgL ₃ 5.20	5.20											AgL_3	21.70	$AgH_{-1}L$	5.30
<i>u</i>																	$AgH_{-1}L_2$	8.59
Al ³⁺			AIL 3.84		AIL	-0.39	AIL	AIL 7.01			AIHL	AIHL 20.01	AIL	18.96				
			AIL ₂ 5.58	5.58			AlL_2	AlL ₂ 12.63			Al_2L	Al ₂ L 18.98	AIHL	21.78				
							AlL_3	AlL ₃ 16.70										
							AlL_4	AlL ₄ 19.40										
Ca ²⁺	CaL	3.22	CaL 2	2.36	CaL	0.40	CaL	1.14	CaL	CaL 0.20	CaL	6.46	CaL	12.44				
	CaHL 11.43	11.43							CaL_2	CaL ₂ -0.11	CaHL 15.04	15.04	CaHL	15.97				
10											CaH ₂ L 20.92	,20.92						
Cd ²⁺	CdL 4.37	4.37	CdL 2.37		CdL 1.98	1.98	CdL	CdL 1.20	CdL	CdL 2.55	CdHL	CdHL 16.08	CdL	18.10	CdL	6.01	CdL	8.01
	CdL ₂ 7.23	7.23	CdL ₂ 3.50		CdL ₂ 2.60	2.60			CdL_2	CdL ₂ 4.55			CdHL	21.43	CdL_2	11.12	CdL_2	15.31
	CdHL 11.83	11.83							CdL_3	CdL ₃ 5.89			CdH ₂ L 23.23	23.23	CdL_3	15.65	CdL ₃	17.11
									CdL_4	6.80					CdL_4	17.92	CdL_4	19.31
Co^{2+}	CoL	4.28	CoL 2	2.30	CoL	CoL -0.35	CoL	1.40	CoL	2.03	CoHL	CoHL 15.43	CoL	18.16			CoL	5.20
	CoHL 12.22	12.22							CoL_2	CoL ₂ 3.49			CoHL	21.59				

542

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
	SO_4^{2-}	CI-	F-	NH ₃	PO_4^{3-}	EDTA	CN ⁻	Ĵ	-SH	
	HgL 2.47	HgL 7.33	HgL 1.60			HgL 23.24	HgL	17.00		
	HgL ₂ 3.48	HgL ₂ 14.03		HgL ₂ 17.79		HgHL 26.87	HgL_2	32.75	HgL_2	38.42
		HgL ₃ 15.03			г	HgH ₂ L 29.17	HgL ₃	36.31	HgH ₋₁ L ₂ 31.93	31.93
		HgL ₄ 15.63		HgL ₄ 19.28			HgL_4	38.97	HgH ₋₂ L ₂ 23.22	23.22
	NiL 2.30 NiL	NiL -0.43	NiL 1.30	NiL 2.72	NiHL 15.33	NiL 20.11	NiL ₄	30.20	NiL	5.49
PbL 6.53 PbL ₂ 9.94 PbHL 13.23	0.82	NiL ₂ -1.89		NiL ₂ 4.87	NiH ₂ L 20.50 NiHL	NiHL 23.64	$NiHL_4$	36.03		
PbL 6.53 PbL ₂ 9.94 PbHL 13.23				NiL ₃ 6.53		NiH ₂ L 24.74	NiH_2L_4	40.74		
PbL 6.53 PbL ₂ 9.94 PbHL 13.23				NiL ₄ 7.65			NiH ₃ L ₄	43.34		
PbL 6.53 PbL ₂ 9.94 PbHL 13.23				NiL ₅ 8.31						
PbL 6.53 PbL ₂ 9.94 PbHL 13.23				NiL ₆ 8.27						
	PbL 2.69	PbL 1.56	PbL 2.15		PbHL 15.48	PbL 19.71				
PbHL 13.23	PbL ₂ 3.47	PbL ₂ 1.90	PbL ₂ 3.24		PbH ₂ L 21.07	PbHL 22.54			PbL_2	15.27
		PbL ₃ 1.80				PbH ₂ L 24.44			PbL_3	16.57
		PbL ₄ 1.38				PbH ₃ L 25.64				
Zn ²⁺ ZnL 4.76 ZnL	2.34	ZnL 0.46	ZnL 1.30	ZnL 2.21	ZnHL 15.69	ZnL 18.00			$ZnH_{-2}L_{2} - 1.43$	-1.43
ZnL ₂ 7.30 ZnL ₂	ZnL_2 3.28 ZnL_2	ZnL ₂ 0.45		ZnL ₂ 4.49		ZnHL 21.43	ZnL_2	11.07		
ZnHL 11.83		ZnL ₃ 0.50		ZnL ₃ 6.85		ZnH ₂ L ₂ 22.83	ZnL_3	16.05		
	.,	ZnL ₄ 0.20		ZnL ₄ 8.87			ZnL_4	19.62		

Table 10.3, continued, p. 544 and Appendix A.5, p. 862