Chapter 1	
p. 27	In the last line of the paragraph after Equation (1.18b), the last phrase should be: one ohm ${ }^{-1}$ is defined as one Siemen (S).
p. 28	Four lines from the bottom, units for lambda (λ) should be $\mathrm{S} /\left(\mathrm{eqv}-\mathrm{cm}^{2}\right.$), not $\mathrm{S} /\left(\mathrm{eqv}-\mathrm{cm}^{3}\right.$).
p. 29	Table 1.2 title, units for lambda (λ) should be $\mathrm{S} /\left(\mathrm{eqv}-\mathrm{cm}^{2}\right.$), not $\mathrm{S} /\left(\mathrm{eqv}-\mathrm{cm}^{3}\right)$.
Chapter 2	
p. 48	Top, Standard molar enthalpy of reaction; $\Delta \bar{H}_{r}^{\circ}$ in text and in equation.
p. 55	In the table at the bottom of the page, the values of $\log \gamma, \gamma$, and Activity for Ca^{2+} should be $-0.089,0.814$, and 8.14×10^{-5}, respectively. The corrected table appears below:
	$\begin{array}{llll}\text { Ion } & \text { Size Parameter } a & \log \gamma & \gamma\end{array}$
	Cl^{-} 3 -0.0230 0.948
	$\mathrm{Ca}^{2+} 660.0890 .814{ }^{\text {a }}$
	$\mathrm{HCO}_{3}^{-} 40-0.0230 \quad 0.948$ (40.48×10^{-4}
p. 58	Lines 4-5, "reactant molecules . . products," should be "product molecules . . . reactants."
Chapter 3	
p. 81	In the second line of the paragraph above Equation (3.1), delete the word "negative." Sentence should read: Figure 3.1 includes three curves - one for the enthalpy (H) of the molecules, one for the product of the system temperature and the entropy (\boldsymbol{S}) of the molecules, and one for their Gibbs energy (G).
p. 82	In Figure 3.1, the two E^{*} terms are reversed. The term on the far left should be $E^{*}{ }_{\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P}}$ and the term on the right should be $E^{*}{ }_{\mathrm{P} \rightarrow \mathrm{A}+\mathrm{E}}$. The corrected figure appears below: Progression of reaction (reaction coordinate)

Problems $\text { p. } 126$	In Problem 12, the rate constant in line 8 has incorrect units. The expression should be:$k=10^{-3.2} \mathrm{~atm}^{-1} \cdot \mathrm{~s}^{-1}, \quad \text { not } k=10^{-3.2} \mathrm{~atm}^{-1} \cdot \mathrm{~d}^{-1}$					
p. 128	The revised version of Problem 19 is available on the book's webpage at waveland.co					
Chapter 4						
p. 218	In the lines just before section 4.4, the value 1.13×10^{-4} should be 1.31×10^{-4}.					
Chapter 7						
p. 366	The equations at the top of p. 366 are incorrect. Replace that material with the following content:$\begin{aligned} \mathrm{HAc}_{\text {added }}=\text { Acetate }-\mathbf{1}_{\mathrm{eq}}-\text { Acetate }-\mathbf{1}_{\mathrm{in}, \mathrm{init}} & =1.1934 \times 10^{-3}-1.0 \times 10^{-4} \\ & =1.0934 \times 10^{-3} \end{aligned}$$\mathrm{HAc}{ }_{\mathrm{added}}=\left[\mathbf{H}^{+}\right]_{\mathrm{eq}}-\left[\mathbf{H}^{+}\right]_{\mathrm{in}, \text { init }}=1.0934 \times 10^{-3}-0=1.0934 \times 10^{-3}$					
p. 367	In Figure 7.6 the table values and the caption are incorrect, as well as the equations and numerical values in the paragraph below the figure. Corrected material appears below: (a) Concentrations and activities of aqueous inorganic species (mol / I) (b) Distribution of components between dissolved, sorbed and precipitated phases (Concentrations in molal) Figure 7.6. Output screens for a system containing $10^{-4} M \mathrm{HAc}$ which is then adjusted to pH 4.0 by addition of strong acid. (a) Overall summary of solution composition; (b) Equilibrated mass distribution. Once again, we can compute the amount of reagent added by writing the mass balance, this time on \mathbf{H}^{+}: $[\mathrm{HCl}]_{\mathrm{added}}=\left[\mathbf{H}^{+}\right]_{\mathrm{eq}}-\left[\mathbf{H}^{+}\right]_{\mathrm{in}, \mathrm{ninit}}=1.861 \times 10^{-4}-1.00 \times 10^{-4}=8.61 \times 10^{-5}$ Of the $1.861 \times 10^{-4} M$ TOTH in the equilibrium solution, $1.012 \times 10^{-4} M$ is present as free H^{+} (i.e., $\mathrm{H}_{3} \mathrm{O}^{+}$), generating an H^{+}activity of $10^{-4.0}$. The rest of the TOTH $\left(8.496 \times 10^{-5} \mathrm{M}\right)$ is bound with acetate in HAc molecules. As expected, since the pH of 4.0 is lower than $\mathrm{p} K_{a}$ for HAc (4.74), the protonated species is present at a larger activity $\left(8.496 \times 10^{-5}\right)$ than deprotonated Ac^{-} $\left(1.487 \times 10^{-5}\right)$.					

Chapter 8	
p. 425	In Table 8.6, row (h), the value in the ALK column should be 3.01, not 2.51 .
p. 427	In Equation (8.21b), insert a coefficient " 2 " before α_{2}.
p. 432	In the equation at the bottom of the page, the signs preceding the $\left(\mathrm{H}^{+}\right)$and $\left(\mathrm{OH}^{-}\right)$terms are reversed. The equation should read: $\text { TOTH } \left.=2 \mathrm{H}_{2} \mathrm{CO}\right)+\left(\mathrm{HCO}_{3}^{-}\right)-\left(\mathrm{OH}^{-}\right)+\left(\mathrm{H}^{+}\right)$
Chapter 9	
p. 480	In the equation shown for part (b), the denominator $c_{\mathrm{L}, i}$ in the first fraction should be $c_{\mathrm{L}, i} i^{\prime}$ and the term in the denominator $\left(c_{\mathrm{L}, i}\right)$ in the second fraction should be $\left(c_{\mathrm{L}, i}\right)$.
Chapter 10	
p. 542	On the first page of Table 10.3, some of the entries in the top row showing stability constants for complexes of Ag^{+}with EDTA, CN^{-}, and HS^{-}are in the wrong columns. The correct entries are as follows: The same change should be made to the copy of this Table in the Appendix, p. 860. See Errata p. 5 for a corrected copy.
p. 544	On the third page of Table 10.3, in the fifth column, showing stability constants for complexes of Hg^{2+} with NH_{3}, the entry labeled HgL_{3} should be moved down one line and changed to HgL_{4}, and its associated value should be changed from 10.04 to 19.28. The same change should be made to the copy of this Table in the Appendix, p.862. See Errata p. 6 for a corrected copy.
p. 559	Table 10.5, add n_{e} to the equation for $\Delta \bar{G}_{r}=-2.303 n_{e} R T \Delta \mathrm{pe}$.
Chapter 11	
$\text { p. } 652$ Problems	In Problem 22, line 5, change $\mathrm{Zn}(\mathrm{OH})_{2}(s)$ to $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{am})$.
Chapter 12	
p. 682	In the expression for $\left\{\mathrm{Cu}^{+}\right\} /\left\{\mathrm{Cu}^{2+}\right\}$ near the bottom of the page, $10^{2.72}$ should be $10^{2.69}$, and $10^{-25.92}$ should be $10^{-25.95}$. Two lines lower, in the expression for $\left\{\mathrm{Co}^{2+}\right\} /\left\{\mathrm{Co}^{3+}\right\}, 10^{33.1}$ should be $10^{32.4}$, and $10^{2.46}$ should be $10^{3.76}$.
p. 686	The following sentence should be added to the answer to part (a) at the bottom of the page: The half-reaction for oxidation of NH_{3} can be obtained by adding the " K_{a} " reaction for $\mathrm{NH}_{4}{ }^{+} / \mathrm{NH}_{3}$ to the half-reaction shown in Table 12.3 for the $\mathrm{NO}_{3}{ }^{-} / \mathrm{NH}_{4}{ }^{+}$couple.

Chapter 12 (continued)	
p. 687	In part (ii) $\mathrm{Cl}_{2} / \mathrm{CN}^{-}$: In the first reaction shown, the product should be Cl^{-}, not $1 / 2 \mathrm{Cl}^{-}$ $1 / 2 \mathrm{Cl}_{2}(a q)+\mathrm{e}^{-} \leftrightarrow \mathrm{Cl}^{-}$ In the third reaction shown, insert a + sign between Cl^{-}and $1 / 2 \mathrm{OCN}^{-}$on the product side $1 / 2 \mathrm{Cl}_{2}(g)+1 / 2 \mathrm{CN}^{-}+\mathrm{OH}^{-} \leftrightarrow \mathrm{Cl}^{-}+1 / 2 \mathrm{OCN}^{-}+1 / 2 \mathrm{H}_{2} \mathrm{O}$ In the last sentence before equation (12.22), omit the word "log" before variable K. The sentence should read By definition, e° equals K for the oxidation reaction, so we can write:
p.698-99	In line 4 of Example $12.10,10^{45.61}$ should be $10^{35.4}, 10^{52.63}$ should be $10^{43.6}$, and $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$ should be $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}$. (Note that the species $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$ on the subsequent line is correct.) Correspondingly, the $\log K$ values for the reactions at the top of p .699 should be 35.4 for the second reaction, -43.6 for the third reaction, and 4.83 (instead of 6.01) for the overall reaction. Also, in the second reaction, the reactant Fe^{3+} should be Fe^{2+}. And, in the final paragraph of the solution, $10^{-6.01}$ should be $10^{-4.83}$, and >6.01 should be >4.83.
p. 759 Problems	In Problem 9, line 1, change $\mathrm{S}(\mathrm{s})$ to $\mathrm{SO}_{3}{ }^{2-}$.

Table 10.3, p. 542 and Appendix A.5, p 860

	CO_{3}^{2-}	SO_{4}^{2-}	Cl^{-}	F^{-}	NH_{3}	PO_{4}^{3-}	EDTA		CN^{-}	HS^{-}	
Ag^{+}		AgL 1.30	AgL 3.31	AgL 0.40	AgL 3.31		AgL	8.05	$\mathrm{AgH}_{-1} \mathrm{~L}-0.78$	AgL	
		$\mathrm{AgL}_{2} 5.25$		AgL_{2}	7.21		AgHL	14.74	$\mathrm{AgL}_{2} 20.48$	AgL_{2}	17.91
		$\mathrm{AgL}_{3} 5.20$							$\mathrm{AgL}_{3} \quad 21.70$	$\mathrm{AgH}_{-1} \mathrm{~L}$	5.30
										$\mathrm{AgH}_{-1} \mathrm{~L}_{2}$	8.59
Al^{3+}		AlL 3.84	AlL -0.39	AlL 7.01		AlHL 20.01	AlL	18.96			
		$\mathrm{AlL}_{2} 5.58$		$\mathrm{AlL}_{2} 12.63$		$\begin{array}{lll}\mathrm{Al}_{2} \mathrm{~L} & 18.98\end{array}$	AlHL	21.78			
				$\mathrm{AlL}_{3} 16.70$							
				$\mathrm{AlL}_{4} 19.40$							
Ca^{2+}	CaL 3.22	CaL 2.36	CaL 0.40	CaL 1.14	CaL 0.20	CaL 6.46	CaL	12.44			
	CaHL 11.43				$\mathrm{CaL}_{2}-0.11$	CaHL 15.04	CaHL	15.97			
						$\mathrm{CaH}_{2} \mathrm{~L} 20.92$					
Cd^{2+}	CdL 4.37	CdL 2.37	CdL 1.98	CdL 1.20	CdL 2.55	CdHL 16.08	CdL	18.10	CdL 6.01	CdL	8.01
	$\mathrm{CdL}_{2} 7.23$	$\mathrm{CdL}_{2} 3.50$	$\mathrm{CdL}_{2} 2.60$		$\mathrm{CdL}_{2} 4.55$		CdHL	21.43	$\mathrm{CdL}_{2} 11.12$	CdL_{2}	15.31
	CdHL 11.83				$\mathrm{CdL}_{3} 5.89$		$\mathrm{CdH}_{2} \mathrm{~L}$	23.23	$\begin{array}{lll}\mathrm{CdL}_{3} & 15.65\end{array}$	CdL_{3}	17.11
					$\mathrm{CdL}_{4} 6.80$				$\mathrm{CdL}_{4} \quad 17.92$	CdL_{4}	19.31
Co^{2+}	CoL 4.28	CoL 2.30	CoL -0.35	CoL 1.40	CoL 2.03	CoHL 15.43				CoL	5.20
	CoHL 12.22				$\mathrm{CoL}_{2} 3.49$		CoHL				

Table 10.3, continued, p. 544 and Appendix A.5, p. 862
Table 10.3 - continued from previous page

